HEATS OF VAPORIZATION OF ALKYL ESTERS OF FORMIC, ACETIC AND PROPIONIC ACIDS*

Václav Svoboda, Věra Uchytilová, Vladimír Majer and Jiří Pick

Department of Physical Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received June 11th, 1979

Heats of vaporization of ethyl, propyl, butyl esters of formic acid, methyl, ethyl, propyl and butyl esters of acetic acid and methyl, ethyl and propyl esters of propionic acid were measured. These measurements reassume and complete data known from the literature. From the combination of values of heats of vaporization, the cohesive and vaporization internal energies of the set investigated were computed in the dependence on temperature.

In our previous papers^{1,2}, the values of heats of vaporization of alkyl esters of formic, acetic and propionic acids had been given as a beginning of a more detailed measurement of heats of vaporization of alkyl esters of aliphatic monocarboxylic acids. The design of a new type of calorimeter³ had made it possible to extend the temperature range for heats of vaporization determination and so perform measurements unrealizable with the original vaporization calorimeter. This work reassumes and completes our foregoing measurements. Along with the selected literature data, it provides the compiled set of data on heats of vaporization of the chosen series of esters. The formation of such representative sets pursues above all the aim to obtain as reliable as possible data on a property investigated even by excluding the values whose determination has been accompanied by a systematic error. This set of data has become a basis for computing the cohesive and vaporization internal energies which, together with the data on heat of vaporization, characterize the description of phase vapor-liquid equilibrium.

EXPERIMENTAL

Preparation and purity of substances. The substances used in this work have been prepared in the same way as the syntheses, purification and drying described in previous papers^{1,2}. As well the values of determined physical properties, *i.e.* normal boiling point, refractive index and density, have been in good agreement with the data given in the literature. The content of impurities has been proved by a mass spectrometer analysis not to be higher than 0.05% for all the esters.

* Part XX in the series Enthalpy Data of Liquids; Part XIX: This Journal 45, 3063 (1980).

3234

The measurement of heats of vaporization of esters has been carried out in the same calorimeter whose design and experimental procedure when determining heats of vaporization had been described formerly³. It is a vaporization isothermal calorimeter which makes it possible to measure in the temperature range of $25-100^{\circ}C$ at saturated vapour pressures of 1-200 kPa. The apparatus works on the principle of total evaporation of liquid and is equipped with a removable evaporation vessel. This arrangement enables to determine the mass of evaporated substance by differential weighing of the vessel before the experiment and after it. The error of the heats of vaporization measured is lower than 0.2%.

RESULTS

The measured values of heats of vaporization of the esters along with the references of original and taken over data are given in Table I. The compiled set has been made up from the values reported in this work and from selected values for the following substances and temperatures: From the work by Cihlář and coworkers¹, the data have been taken on ΔH_{ν} of ethyl formate (for the temperatures of 30.85, 40.30, 54.55°C) and of propyl formate (52.70, 57.50, 57.70, 70.50, 77.75, 81.50, 90.25°C). From the data measured by Svoboda and coworkers², the values of ΔH_{ν} have been used for methyl acetate (30.85, 40.30, 54.55, 57.50°C), ethyl acetate (52.70, 57.50, 70.50, 77.70, 90.25°C), methyl propionate (52.70, 57.50, 70.50, 81.45, 90.25°C) and ethyl propionate (52.70, 57.50, 70.50, 81.45, 90.25°C) and ethyl propionate (62.95, 70.50, 77.70, 90.25°C). From the measurement by Mathews⁴, the data have been taken on ΔH_{ν} for methyl acetate at the temperature of 56.34°C and for methyl acetate at 79.00°C; form the work by Connet and coworkers⁵, the data for methyl acetate

TABLE I

Substance	25°C	40°C	55°C	70°C	85°C
Ethyl formate	ref. ¹	ref. ¹	ref. ¹	28.80	
Propyl formate	37.49	36.52	ref. ¹	ref. ¹	ref. ¹
Butyl formate	41.25	40.02	38.97		36.79
Methyl acetate	32.30	ref. ^{2,4,5}	ref. ^{2,4,5}	29.50	
Ethyl acetate	35.62	34.60	ref. ^{2,5}	ref. ^{2,5}	31.41
Propyl acetate	39.83	38.59	ref. ^{2,5}	ref. ^{2,5}	35.30
Butyl acetate		42.96	41.72	40.58	39.44
Methyl propionate	35.85	34.93	ref. ^{2,4}	ref. ^{2,4}	ref.2,4
Ethyl propionate	39.25	38.22	ref. ²	ref. ²	ref. ²
Propyl propionate		42.14	41.11	39.98	38.83

Measured Heats of Vaporization (kJ/mol) and Literature Sources for the Set of Selected Esters at Different Temperatures

 $(22\cdot35, 38\cdot75^{\circ}C)$, ethyl acetate $(47\cdot41, 65\cdot47, 77\cdot17^{\circ}C)$ and propyl acetate $(62\cdot25, 80\cdot11, 101\cdot75^{\circ}C)$. The data given by Wadsö⁶ and those by Geiseler and coworkers⁷ have not been included because of considerable deviations from those of the other authors. The compiled set of data on the temperature dependence of heat of vaporization has been correlated for each ester by the Thiesen relation

$$\Delta H_{\rm v} = K(1 - T/T_{\rm k})^{\alpha}, \qquad (1)$$

where K and α are the correlation constants in Eq. (1) and T_k is the critical temperature. Table II gives summary of calculated constants of the Thiesen relation, the T_k value used and the standard deviations of correlations σ . Further, the values of heat of vaporization at normal boiling point (ΔH_{vNBP}) and the temperature range in which the data have been treated are given. The values of T_k for majority of esters have been taken over from the paper by Kudchadker and coworkers⁸, T_k for butyl formate has been estimated according to Forman and Thodos⁹.

The normal boiling points of most esters have been calculated from the Antoine equation using the constants given in the literature¹⁰; for butyl acetate they have been taken from the work¹¹.

Calculation of Vaporization Internal and Cohesive Energies

The vaporization internal (ΔU_v) and cohesive energies (ΔU_c) are quantities which characterize the reversible phase transition of the liquid-vapour type and which can be defined in terms of the following schemes:

$$\Delta U_{v} = U(g, T, P^{0}) - U(l, T, P^{0}), \qquad (2)$$

-0

where the symbols g(1) denote the gas (liquid) phase and P^0 the saturated vapour pressure;

$$\Delta U_{\rm c} = U(\mathrm{g}, T, P \to 0) - U(1, T, P^0) = \Delta U_{\rm v} + \int_{\mathrm{P}_0}^{0} (\partial U/\partial P)_{\mathrm{T}}^{\mathrm{g}} \mathrm{d}P .$$
 (3)

The last term in Eq. (3) is a correction for the non-ideal behaviour of the gas phase.

The most natural way of calculation of vaporization internal and cohesive energies is based on the data on heat of vaporization. Both energies are simple functions of heat of vaporization, viz.

$$\Delta U_{\mathbf{v}} = \Delta H_{\mathbf{v}} - P^0 \ \Delta V = \Delta H_{\mathbf{v}} - P^0 (V^{\mathbf{g}} - V^1) \tag{4}$$

and

$$\Delta U_{\rm c} = \Delta H_{\rm v} + P^0 V^1 - RT + \int_{P_0}^0 \left[V - T(\partial V / \partial T)_{\rm P} \right]^{\rm g} \mathrm{d}P \,. \tag{5}$$

Collection Czechoslov. Chem. Commun. [Vol. 45] [1980]

Η	
3LE	
2	

Summary of Constants K and α of the Thiesen Relation for ΔH_v

Substance	K, kJ/mol	ъ	$T_{\rm k}, {\rm K}$	σ, kJ/mol	^f NBP, °C	ΔH _{v NBP} kJ/mol	Temperature interval, °C
Ethyl formate	46-749	0-4314	508-4	0-060	54-30	29-94	31—70
Propyl formate	52-370	0-4136	538-0	0-018	80-85	33-60	2590
Butyl formate	57-558	0-4470	565.2	0.094	105.60	35.06	25-85
Methyl acetate	45-028	0-3747	506-8	0-034	56.90	303-3	22—70
Ethyl acetate	50-172	0-4070	523-2	0.031	77-15	31-97	2590
Propyl acetate	56-051	0.4398	549-4	0.073	101-60	33.86	2590
Butyl acetate	61-567	0-4632	579-0	0.088	126.10	35.81	40-85
Methyl propionate	49-729	0-3965	530-6	0-030	79-76	32-23	2590
Ethyl propionate	54-774	0.4220	546-0	0·024	99.10	33-79	25—90
Propyl propionate	59-445	0-4404	578.0	0.020	122.4	35.77	40

3236

When calculating these quantities we can assume, for usual types of substances, that within the range from ambient temperatures to the temperatures close to normal boiling point, the P-V-T behaviour of the gas phase can be expressed in terms of the volume-explicit virial equation of state restrained to the second virial coefficient.

Then we can rearrange the relations for calculating the vaporization internal and cohesive energies to the forms

$$\Delta U_{\nu} = \Delta H_{\nu} + P^{0}V^{1} - RT - BP^{0} \tag{6}$$

and

$$\Delta U_{\rm c} = \Delta H_{\rm v} + P^0 V^1 - RT - P^0 [B - T({\rm d}B/{\rm d}T)], \qquad (7)$$

where B denotes the second virial coefficient. Eqs (6) and (7) have been used in this work.

When calculating the vaporization internal and cohesive energies, the effect of P-V-T behaviour of the gas phase increases with increasing temperature. This can also influence negatively the accuracy of calculated quantities. Therefore we must pay proper attention to the description of the volumetric behaviour of the gas phase. Providing that the direct experimental values of the second virial coefficient are not known it is necessary to find a suitable relation which would enable us to estimate these values with sufficient accuracy.

The literature data on the second virial coefficient for the set of esters considered are known only for higher temperature¹². The extrapolation of these data down to the temperature of 25°C, for which the ΔH_v values are known, would be uncertain. It would appear especially unfavourably when calculating the temperature derivative. Therefore they have been used only for selecting a suitable relation to estimate the second virial coefficient. Good agreement between the literature and calculated *B* values, especially with regard to the temperature derivative, has been proved when using the relation proposed by Vetere¹³:

$$B = (B^{(0)} + \omega B^{(1)} + \omega_{\rm p} B^{(2)}) R T_{\rm k} / P_{\rm k} , \qquad (8)$$

where $B^{(0)}$ and $B^{(1)}$ are terms of the relation recommended by Pitzer and Curl¹⁴, the term $\omega_p B^{(2)}$ involves the effect of polar substances, ω is the Pitzer acentric factor, *R* is the gas constant and P_k the critical pressure. The constant ω_p is defined by

$$\omega_p = T_{NBP}^{1.72}/M - 263$$

In the cases when the constant ω_p is negative, it is set to be zero and the Vetere relation reduces to the Pitzer-Curl one. The acentric factor ω has been calculated by means of the Antoine constants^{10,11} which have also been used for calculating the saturated vapour pressures in Eq. (6) and (7).

Collection Czechoslov, Chem. Commun. [Vol. 45] [1980]

Substance	A1, kJ/mol	A2	A ₃	σ, kJ/mol	A'1, kJ/mol	A'2	A'3	σ, kJ/mol
Ethyl formate	47-41	0 0905	0·4868	0-002	49-74	0-4132	0-3111	0-002
Propyl formate	53-57	0·1262	0-4388	0.003	56.86	0.4782	0·2688	0-003
Butyl formate	58-35	0.0753	0.4947	0.002	60-31	0.2980	0.3809	0.004
Methyl acetate	45.47	0-0949	0.4108	0.002	54-35	0.4602	0.2230	0·004
Ethyl acetate	51-08	0.1091	0·4391	0.004	54-35	0.4602	0.2731	0-003
Propyl acetate	57-05	0-0914	0·4808	0.003	58-39	0.2749	0.4011	0 003
Butyl acetate	62-26	0-0521	0.5209	0.002	63·46	0.2010	0.4408	0.003
Methyl propionate	50-46	0·1012	0.4310	0.003	53-58	0.4490	0-2644	0.004
Ethyl propionate	55-70	0.0950	0.4599	0.003	58.57	0.3870	0.3199	0.004
Propyl propionate	59-72	0.0457	0.4958	0.001	62-74	0.3192	0.3678	0.003

Summary of Constants A_1 to A'_3 of Relations for Vaporization Internal and Cohesive Energies TABLE III

The values of critical temperatures and pressures needed for the calculations have been taken from the literature sources used for correlating the ΔH_v data. The values of P_k for butyl acetate¹³, butyl formate and propyl propionate⁹ have been obtained from other sources.

The values of molar volumes of the liquid phase in their dependence on temperature have been obtained by calculating from the modified Rackett equation¹⁵:

$$V^{1} = (RT_{k}/P_{k}) z_{RA}^{[1+(1-T_{r})^{2/7}]}, \qquad (9)$$

where V^1 is the molar volume of the liquid phase, T_c is the reduced temperature and z_{RA} the constant determined from experimental data. For seven esters, the relation has been used to express z_{RA}

$$z_{\mathrm{RA}} = P_{\mathrm{k}} V_{\mathrm{RA}} / \boldsymbol{R} T_{\mathrm{k}}$$
,

where V_{RA} is a parameter determined by Spencer and Adler¹⁶ for individual substances from the temperature dependence of densities using Eq. (9). For the remaining three substances (butyl formate, butyl acetate and propyl propionate), z_{RA} has been determined from a known value of density at one temperature, in our case at the temperature of 35°C. For this purpose, the densities have been determined by the pycnometric method for the three esters and two temperatures 25°C and 35°C: propyl formate ($\varrho_{25} = 0.887704, \varrho_{35} = 0.86878$), butyl formate ($\varrho_{25} = 0.88536, \varrho_{35} =$ = 0.87696) and butyl acetate ($\varrho_{25} = 0.87758, \varrho_{35} = 0.87009$). The numerical values of densities are given in g/cm³.

For analytical expression of the temperature dependence of cohesive and vaporization internal energies, the empirical relation has been proposed in the form

$$\Delta U_{\rm v} = A_1 \, {\rm e}^{-A_2 {\rm T}_{\rm r}} (1 - T_{\rm r})^{A_3} \tag{10}$$

and

$$\Delta U_{\rm c} = A_1' \, {\rm e}^{-A_2' T_{\rm r}} (1 - T_{\rm r})^{A_3'} \,. \tag{11}$$

The symbols $A_1(A'_1)$, $A_2(A'_2)$ and $A_3(A'_3)$ denote the correlation constants in Eqs (10) and (11). The results of the correlations are given in Table III. The values of standard deviations prove the convenience of the analytical form for the temperature dependence of ΔU_v and ΔU_c .

Error Estimation

To estimate the error in the cohesive and vaporization internal energies computation we start from the assumption that ΔH_{ν} is determined with an accuracy of 0.2%. The error connected with the determination of the last term on the right-hand side

Collection Czechoslov. Chem. Commun. [Vol. 45] [1980]

of Eq. (7) and that connected with the determination of ΔH_v take part in the highest degree in the error of calculation of cohesive energy. The error of the term P^0V^1 is negligible, the value of RT can be considered as accurate. We assume that the inaccuracy of the determination of the term with second virial coefficient does not exceed the value of 15%, and for the term with the temperature derivative of the second virial coefficient the value of 25%. Both terms take the value of about -0.45kJ/mol in the vicinity of normal boiling point. Consequently the error in the calculation of cohesive energy increases at most by 0.2 - 0.3% compared with that in ΔH_v and when calculating the vaporization internal energy, at most by 0.1%. This error substantionally diminishes with decreasing temperature.

REFERENCES

- 1. Cihlář J., Svoboda V., Hynek V., Holub R.: This Journal 41, 1 (1976).
- 2. Svoboda V., Veselý F., Holub R., Pick J.: This Journal 42, 943 (1977).
- 3. Majer V., Svoboda V., Hynek V., Pick J.: This Journal 43, 1313 (1978).
- 4. Mathews J. H.: J. Amer. Chem. Soc. 48, 573 (1926).
- 5. Connett J. E., Counsell J. F., Lee D. A.: J. Chem. Thermodyn. 8, 1199 (1976).
- 6. Wadsö I.: Acta Chem. Scand. 20, 544 (1966).
- Geiseler G., Quitzsch K., Hofmann H. P., Pfestorf R.: Z. Phys. Chem. (Leipzig) 252, 170 (1973) (3/4).
- 8. Kudchadker A. P., Alani G. H., Zwolinski B. J.: Chem. Rev. 68, 659 (1968).
- 9. Forman J., Thodos G.: AIChE J. 4, 356 (1958); 6, 206 (1960).
- 10. Wichterle I., Linek J.: Antoine Vapour Pressure Constants of Pure Compounds. Academia, Praha 1971.
- Boublik T., Fried V., Hála E.: The Vapour Pressures of Pure Substances. Elsevier, Amsterdam 1973.
- 12. Dymond J. H., Smith E. B.: The Virial Coefficients of Gases. Clarendon Press, Oxford 1969.
- Reid R. C., Prausnitz J. M., Sherwood T. K.: The Properties of Gases and Liquids, 3rd Ed. McGraw Hill, New York 1977.
- 14. Pitzer K. S., Curl R. F.: J. Amer. Chem. Soc. 79, 2369 (1957).
- 15. Rackett H. G.: J. Chem. Eng. Data 15, 415 (1970).
- 16. Spencer C. F., Adler S. B.: J. Chem. Eng. Data 23, 82 (1978).

Translated by J. Linek.